众所周知,引力波是爱因斯坦广义相对论最后一块未解之谜。二十世纪初爱因斯坦提出广义相对论后,时空的概念也颠覆了大多数人的物理常识。
广义相对论认为,大到天体,小到人类本身,在它们运动时,都会使周围的时空产生涟漪。这是很容易理解的一个概念,就像船在水中移动时会产生水波。只是在发现引力波之前,这一理论还从未被验证过。
然而,要观测到引力波——这种在宇宙中扩散的涟漪——是一项异常艰难的任务。打个比方,如果要在地球上探测某人运动时周围产生的时空扭曲,基本上是不可能的,因为这种时空扰动太小太小了。
这就是为什么科学家们创造了 LIGO 和 Virgo 这类引力波观测天文台,并通过其观察百万、甚至数亿光年外巨大天体快速运动时所产生的强力扰动,比如黑洞或中子星融合。这类天体在融合时,每秒会进行相互环绕的多次旋转,并最终融合为一个质量极大的全新天体。与此同时,天体运动和碰撞时所产生的时空扭曲,会表现为引力波形式,并以光速向宇宙的四面八方传播开去。
在抵达地球的过程中,这些波会显著衰减,不过,通过使用类似 LIGO 和 Virgo 这样最敏感的仪器,我们仍然有希望检测到它们。LIGO 装置的大致原理是两条长度相同的探测臂呈 L 型放置,而在两臂的末端放置一面镜子来反射激光。将激光发射到每个镜子上的分裂激光器则位于两个隧道相交处。
在正常情况下,两条长臂应该是完全等长的,因此激光束在两条长臂中传播所花费的时间是一样的。然而一旦有引力波穿过探测器,时空的扭曲会导致一个方向上的长臂长度就会被压缩,而在另一个方向上的长臂则会被拉伸,从而导致两束激光束传播的时间长度出现差异,当它们反射回来并汇合时,就会出现干涉条纹。
图丨Virgo 观测台工作原理
科学家们通过这种干涉效应来测量长臂所出现的任何极其细微的空间变化。当然,这样的长度变化将是极其细微的——LIGO 装置必须能够测出相当于一个质子直径万分之一不到的长度变化,才可能检测到引力波信号。
与此同时,成功完成任务的三个观测台正在从“扫描宇宙”的重任中抽身“休息”。在停机期间,LIGO 和 Virgo 的科学家们将努力提高观测站的灵敏度。LIGO 和 Virgo 也将在 2018 年秋天开始新的观测,一旦这些观测活动开始进行,天文学家们将有望观测到更多的引力波现象。
图丨位于美国 Hanford 和 Livinsgton 的 LIGO,以及位于意大利的 Virgo 天文台
看到这里,相信大家已经对“激光干涉引力波天文台”相关技术,及其对天文学、物理学研究的重大意义有所了解了,但你很难想象,在四十年前,LIGO 其实仅仅只是 MIT 物理学教授雷纳·韦斯(Rainer Weiss)设计的一项课堂练习。但发展到现在,LIGO 已涉及来自美国本土的大学,如麻省理工学院、加州理工学院,以及来自全球 15 个国家、超过 950 位科学家。
雷纳·韦斯,1932 年 9 月 29 日出生于德国柏林。麻省理工学院物理学教授,于 1964 年加入麻省理工学院。韦斯教授发明了干涉引力波探测器,并联合创立了美国国家科学基金会 LIGO 项目。他在将理论及实验物理学应用于宇宙研究领域做出了重大贡献。
图丨麻省理工学院物理学教授雷纳·韦斯(Rainer Weiss)
故事从 1967 年始于麻省理工学院,当时的物理学教务主任要求韦斯教授设计一门广义相对论课程。那时,广义相对论已被纳入数学系的研究领域。虽然是引力理论,但绝大多数人认为它与物理学没什么关系。这主要是因为爱因斯坦理论预测的可观测效应本来就是无限小的,这很难用实验物理学去验证。
爱因斯坦曾看着他的引力公式说道:“所要研究的数字和维度都太小了,小到不会对任何事物造成影响,也没有人能够测量。”当你回想 1916 年的技术条件时,他可能是正确的。
图丨爱因斯坦于 1916 年提出广义相对论
过去 100 年发生了一些大事,天文学的发现表明,人们在 1916 年所掌握的有关紧密压缩源、无限密度方面知识是非常有限的。比如中子星和黑洞。但现在,我们已拥有各种技术去做精确测量。从激光、微波激射器、精密电子仪器、计算机,到大批的科研人员,这些都是那个年代所不敢想象的。
所以,当韦斯教授和他的团队准备开始寻找引力波时,人类已经在技术和知识方面做好了准备。
图丨雷纳·韦斯教授及其 LIGO 团队
1975 年对于 LIGO 来说是非常关键的一年:因为当时韦斯教授正在从事 NASA 资助的宇宙背景辐射研究。NASA 要求组织一个宇宙学和相对论领域空间研究应用方面的委员会。正是在这个委员会中,韦斯教授结识了来自加州理工学院的物理学家基普·索恩(Kip Thorne)。